
PHET EXPLORATIONS

Gravity Force Lab
Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it
changes the gravity force.

Click to view content (https://phet.colorado.edu/sims/html/gravity-force-lab/latest/gravity-force-lab_en.html)

Figure 4.11

4.5 Normal, Tension, and Other Examples of Forces
Forces are given many names, such as push, pull, thrust, lift, weight, friction, and tension. Traditionally, forces have been
grouped into several categories and given names relating to their source, how they are transmitted, or their effects. The most
important of these categories are discussed in this section, together with some interesting applications. Further examples of
forces are discussed later in this text.

Normal Force
Weight (also called force of gravity) is a pervasive force that acts at all times and must be counteracted to keep an object from
falling. You definitely notice that you must support the weight of a heavy object by pushing up on it when you hold it stationary,
as illustrated in Figure 4.12(a). But how do inanimate objects like a table support the weight of a mass placed on them, such as
shown in Figure 4.12(b)? When the bag of dog food is placed on the table, the table actually sags slightly under the load. This
would be noticeable if the load were placed on a card table, but even rigid objects deform when a force is applied to them. Unless
the object is deformed beyond its limit, it will exert a restoring force much like a deformed spring (or trampoline or diving
board). The greater the deformation, the greater the restoring force. So when the load is placed on the table, the table sags until
the restoring force becomes as large as the weight of the load. At this point the net external force on the load is zero. That is the
situation when the load is stationary on the table. The table sags quickly, and the sag is slight so we do not notice it. But it is
similar to the sagging of a trampoline when you climb onto it.
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Figure 4.12 (a) The person holding the bag of dog food must supply an upward force equal in magnitude and opposite in direction to

the weight of the food . (b) The card table sags when the dog food is placed on it, much like a stiff trampoline. Elastic restoring forces in

the table grow as it sags until they supply a force equal in magnitude and opposite in direction to the weight of the load.

We must conclude that whatever supports a load, be it animate or not, must supply an upward force equal to the weight of the
load, as we assumed in a few of the previous examples. If the force supporting a load is perpendicular to the surface of contact
between the load and its support, this force is defined to be a normal force and here is given the symbol . (This is not the unit
for force N.) The word normal means perpendicular to a surface. The normal force can be less than the object’s weight if the
object is on an incline, as you will see in the next example.

EXAMPLE 4.5

Weight on an Incline, a Two-Dimensional Problem
Consider the skier on a slope shown in Figure 4.13. Her mass including equipment is 60.0 kg. (a) What is her acceleration if
friction is negligible? (b) What is her acceleration if friction is known to be 45.0 N?

Common Misconception: Normal Force (N) vs. Newton (N)
In this section we have introduced the quantity normal force, which is represented by the variable . This should not be
confused with the symbol for the newton, which is also represented by the letter N. These symbols are particularly
important to distinguish because the units of a normal force ( ) happen to be newtons (N). For example, the normal force
that the floor exerts on a chair might be . One important difference is that normal force is a vector, while the
newton is simply a unit. Be careful not to confuse these letters in your calculations! You will encounter more similarities
among variables and units as you proceed in physics. Another example of this is the quantity work ( ) and the unit watts
(W).
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Figure 4.13 Since motion and friction are parallel to the slope, it is most convenient to project all forces onto a coordinate system where

one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). is perpendicular to the slope and f is parallel

to the slope, but has components along both axes, namely and . is equal in magnitude to , so that there is no motion

perpendicular to the slope, but is less than , so that there is a downslope acceleration (along the parallel axis).

Strategy

This is a two-dimensional problem, since the forces on the skier (the system of interest) are not parallel. The approach we have
used in two-dimensional kinematics also works very well here. Choose a convenient coordinate system and project the vectors
onto its axes, creating two connected one-dimensional problems to solve. The most convenient coordinate system for motion on
an incline is one that has one coordinate parallel to the slope and one perpendicular to the slope. (Remember that motions along
mutually perpendicular axes are independent.) We use the symbols and to represent perpendicular and parallel,
respectively. This choice of axes simplifies this type of problem, because there is no motion perpendicular to the slope and
because friction is always parallel to the surface between two objects. The only external forces acting on the system are the skier’s
weight, friction, and the support of the slope, respectively labeled , , and in Figure 4.13. is always perpendicular to the
slope, and is parallel to it. But is not in the direction of either axis, and so the first step we take is to project it into
components along the chosen axes, defining to be the component of weight parallel to the slope and the component of
weight perpendicular to the slope. Once this is done, we can consider the two separate problems of forces parallel to the slope
and forces perpendicular to the slope.

Solution

The magnitude of the component of the weight parallel to the slope is , and the magnitude
of the component of the weight perpendicular to the slope is .

(a) Neglecting friction. Since the acceleration is parallel to the slope, we need only consider forces parallel to the slope. (Forces
perpendicular to the slope add to zero, since there is no acceleration in that direction.) The forces parallel to the slope are the
amount of the skier’s weight parallel to the slope and friction . Using Newton’s second law, with subscripts to denote
quantities parallel to the slope,

where , assuming no friction for this part, so that

is the acceleration.

(b) Including friction. We now have a given value for friction, and we know its direction is parallel to the slope and it opposes
motion between surfaces in contact. So the net external force is now
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and substituting this into Newton’s second law, , gives

We substitute known values to obtain

which yields

which is the acceleration parallel to the incline when there is 45.0 N of opposing friction.

Discussion

Since friction always opposes motion between surfaces, the acceleration is smaller when there is friction than when there is 
none. In fact, it is a general result that if friction on an incline is negligible, then the acceleration down the incline is
regardless of mass. This is related to the previously discussed fact that all objects fall with the same acceleration in the absence 
of air resistance. Similarly, all objects, regardless of mass, slide down a frictionless incline with the same acceleration (if the 
angle is the same).
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Resolving Weight into Components

Figure 4.14 An object rests on an incline that makes an angle θ with the horizontal.

When an object rests on an incline that makes an angle with the horizontal, the force of gravity acting on the object is
divided into two components: a force acting perpendicular to the plane, , and a force acting parallel to the plane, .
The perpendicular force of weight, , is typically equal in magnitude and opposite in direction to the normal force, . The
force acting parallel to the plane, , causes the object to accelerate down the incline. The force of friction, , opposes the
motion of the object, so it acts upward along the plane.

It is important to be careful when resolving the weight of the object into components. If the angle of the incline is at an
angle to the horizontal, then the magnitudes of the weight components are

and

Instead of memorizing these equations, it is helpful to be able to determine them from reason. To do this, draw the right
triangle formed by the three weight vectors. Notice that the angle of the incline is the same as the angle formed between
and . Knowing this property, you can use trigonometry to determine the magnitude of the weight components:
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Tension
A tension is a force along the length of a medium, especially a force carried by a flexible medium, such as a rope or cable. The
word “tension” comes from a Latin word meaning “to stretch.” Not coincidentally, the flexible cords that carry muscle forces to
other parts of the body are called tendons. Any flexible connector, such as a string, rope, chain, wire, or cable, can exert pulls
only parallel to its length; thus, a force carried by a flexible connector is a tension with direction parallel to the connector. It is
important to understand that tension is a pull in a connector. In contrast, consider the phrase: “You can’t push a rope.” The
tension force pulls outward along the two ends of a rope.

Consider a person holding a mass on a rope as shown in Figure 4.15.

Figure 4.15 When a perfectly flexible connector (one requiring no force to bend it) such as this rope transmits a force , that force must be

parallel to the length of the rope, as shown. The pull such a flexible connector exerts is a tension. Note that the rope pulls with equal force

but in opposite directions on the hand and the supported mass (neglecting the weight of the rope). This is an example of Newton’s third law.

The rope is the medium that carries the equal and opposite forces between the two objects. The tension anywhere in the rope between the

hand and the mass is equal. Once you have determined the tension in one location, you have determined the tension at all locations along

the rope.

Tension in the rope must equal the weight of the supported mass, as we can prove using Newton’s second law. If the 5.00-kg
mass in the figure is stationary, then its acceleration is zero, and thus . The only external forces acting on the mass are
its weight and the tension supplied by the rope. Thus,

4.39

4.40

Take-Home Experiment: Force Parallel
To investigate how a force parallel to an inclined plane changes, find a rubber band, some objects to hang from the end of
the rubber band, and a board you can position at different angles. How much does the rubber band stretch when you hang
the object from the end of the board? Now place the board at an angle so that the object slides off when placed on the board.
How much does the rubber band extend if it is lined up parallel to the board and used to hold the object stationary on the
board? Try two more angles. What does this show?
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where and are the magnitudes of the tension and weight and their signs indicate direction, with up being positive here.
Thus, just as you would expect, the tension equals the weight of the supported mass:

For a 5.00-kg mass, then (neglecting the mass of the rope) we see that

If we cut the rope and insert a spring, the spring would extend a length corresponding to a force of 49.0 N, providing a direct
observation and measure of the tension force in the rope.

Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a finger joint, or a
bicycle brake cable. If there is no friction, the tension is transmitted undiminished. Only its direction changes, and it is always
parallel to the flexible connector. This is illustrated in Figure 4.16 (a) and (b).

Figure 4.16 (a) Tendons in the finger carry force from the muscles to other parts of the finger, usually changing the force’s direction, but

not its magnitude (the tendons are relatively friction free). (b) The brake cable on a bicycle carries the tension from the handlebars to the

brake mechanism. Again, the direction but not the magnitude of is changed.

EXAMPLE 4.6

What Is the Tension in a Tightrope?
Calculate the tension in the wire supporting the 70.0-kg tightrope walker shown in Figure 4.17.

4.41
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Figure 4.17 The weight of a tightrope walker causes a wire to sag by 5.0 degrees. The system of interest here is the point in the wire at

which the tightrope walker is standing.

Strategy

As you can see in the figure, the wire is not perfectly horizontal (it cannot be!), but is bent under the person’s weight. Thus, the
tension on either side of the person has an upward component that can support his weight. As usual, forces are vectors
represented pictorially by arrows having the same directions as the forces and lengths proportional to their magnitudes. The
system is the tightrope walker, and the only external forces acting on him are his weight and the two tensions (left
tension) and (right tension), as illustrated. It is reasonable to neglect the weight of the wire itself. The net external force is
zero since the system is stationary. A little trigonometry can now be used to find the tensions. One conclusion is possible at the
outset—we can see from part (b) of the figure that the magnitudes of the tensions and must be equal. This is because
there is no horizontal acceleration in the rope, and the only forces acting to the left and right are and . Thus, the
magnitude of those forces must be equal so that they cancel each other out.

Whenever we have two-dimensional vector problems in which no two vectors are parallel, the easiest method of solution is to
pick a convenient coordinate system and project the vectors onto its axes. In this case the best coordinate system has one axis
horizontal and the other vertical. We call the horizontal the -axis and the vertical the -axis.

Solution

First, we need to resolve the tension vectors into their horizontal and vertical components. It helps to draw a new free-body
diagram showing all of the horizontal and vertical components of each force acting on the system.

Figure 4.18 When the vectors are projected onto vertical and horizontal axes, their components along those axes must add to zero, since

the tightrope walker is stationary. The small angle results in being much greater than .

Consider the horizontal components of the forces (denoted with a subscript ):

The net external horizontal force , since the person is stationary. Thus,
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Now, observe Figure 4.18. You can use trigonometry to determine the magnitude of and . Notice that:

Equating and :

Thus,

as predicted. Now, considering the vertical components (denoted by a subscript ), we can solve for . Again, since the person is
stationary, Newton’s second law implies that net . Thus, as illustrated in the free-body diagram in Figure 4.18,

Observing Figure 4.18, we can use trigonometry to determine the relationship between , , and . As we determined
from the analysis in the horizontal direction, :

Now, we can substitute the values for and , into the net force equation in the vertical direction:

and

so that

and the tension is

Discussion

Note that the vertical tension in the wire acts as a normal force that supports the weight of the tightrope walker. The tension is
almost six times the 686-N weight of the tightrope walker. Since the wire is nearly horizontal, the vertical component of its
tension is only a small fraction of the tension in the wire. The large horizontal components are in opposite directions and cancel,
and so most of the tension in the wire is not used to support the weight of the tightrope walker.

If we wish to create a very large tension, all we have to do is exert a force perpendicular to a flexible connector, as illustrated in
Figure 4.19. As we saw in the last example, the weight of the tightrope walker acted as a force perpendicular to the rope. We saw
that the tension in the roped related to the weight of the tightrope walker in the following way:
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We can extend this expression to describe the tension created when a perpendicular force ( ) is exerted at the middle of a
flexible connector:

Note that is the angle between the horizontal and the bent connector. In this case, becomes very large as approaches zero.
Even the relatively small weight of any flexible connector will cause it to sag, since an infinite tension would result if it were
horizontal (i.e., and ). (See Figure 4.19.)

Figure 4.19 We can create a very large tension in the chain by pushing on it perpendicular to its length, as shown. Suppose we wish to pull a

car out of the mud when no tow truck is available. Each time the car moves forward, the chain is tightened to keep it as nearly straight as

possible. The tension in the chain is given by ; since is small, is very large. This situation is analogous to the tightrope

walker shown in Figure 4.17, except that the tensions shown here are those transmitted to the car and the tree rather than those acting at

the point where is applied.

Figure 4.20 Unless an infinite tension is exerted, any flexible connector—such as the chain at the bottom of the picture—will sag under its

own weight, giving a characteristic curve when the weight is evenly distributed along the length. Suspension bridges—such as the Golden

Gate Bridge shown in this image—are essentially very heavy flexible connectors. The weight of the bridge is evenly distributed along the

length of flexible connectors, usually cables, which take on the characteristic shape. (credit: Leaflet, Wikimedia Commons)

Extended Topic: Real Forces and Inertial Frames
There is another distinction among forces in addition to the types already mentioned. Some forces are real, whereas others are
not. Real forces are those that have some physical origin, such as the gravitational pull. Contrastingly, fictitious forces are those
that arise simply because an observer is in an accelerating frame of reference, such as one that rotates (like a merry-go-round) or
undergoes linear acceleration (like a car slowing down). For example, if a satellite is heading due north above Earth’s northern
hemisphere, then to an observer on Earth it will appear to experience a force to the west that has no physical origin. Of course,
what is happening here is that Earth is rotating toward the east and moves east under the satellite. In Earth’s frame this looks
like a westward force on the satellite, or it can be interpreted as a violation of Newton’s first law (the law of inertia). An inertial
frame of reference is one in which all forces are real and, equivalently, one in which Newton’s laws have the simple forms given
in this chapter.
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Earth’s rotation is slow enough that Earth is nearly an inertial frame. You ordinarily must perform precise experiments to
observe fictitious forces and the slight departures from Newton’s laws, such as the effect just described. On the large scale, such
as for the rotation of weather systems and ocean currents, the effects can be easily observed.

The crucial factor in determining whether a frame of reference is inertial is whether it accelerates or rotates relative to a known
inertial frame. Unless stated otherwise, all phenomena discussed in this text are considered in inertial frames.

All the forces discussed in this section are real forces, but there are a number of other real forces, such as lift and thrust, that are
not discussed in this section. They are more specialized, and it is not necessary to discuss every type of force. It is natural,
however, to ask where the basic simplicity we seek to find in physics is in the long list of forces. Are some more basic than
others? Are some different manifestations of the same underlying force? The answer to both questions is yes, as will be seen in
the next (extended) section and in the treatment of modern physics later in the text.

4.6 Problem-Solving Strategies
Success in problem solving is obviously necessary to understand and apply physical principles, not to mention the more
immediate need of passing exams. The basics of problem solving, presented earlier in this text, are followed here, but specific
strategies useful in applying Newton’s laws of motion are emphasized. These techniques also reinforce concepts that are useful
in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, and so the
following techniques should reinforce skills you have already begun to develop.

Problem-Solving Strategy for Newton’s Laws of Motion
Step 1. As usual, it is first necessary to identify the physical principles involved. Once it is determined that Newton’s laws of
motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of the situation. Such a
sketch is shown in Figure 4.21(a). Then, as in Figure 4.21(b), use arrows to represent all forces, label them carefully, and make
their lengths and directions correspond to the forces they represent (whenever sufficient information exists).

Forces in 1 Dimension
Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force
and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a free-body
diagram of all the forces (including gravitational and normal forces). Click to open media in new browser.
(https://phet.colorado.edu/en/simulation/legacy/forces-1d)
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